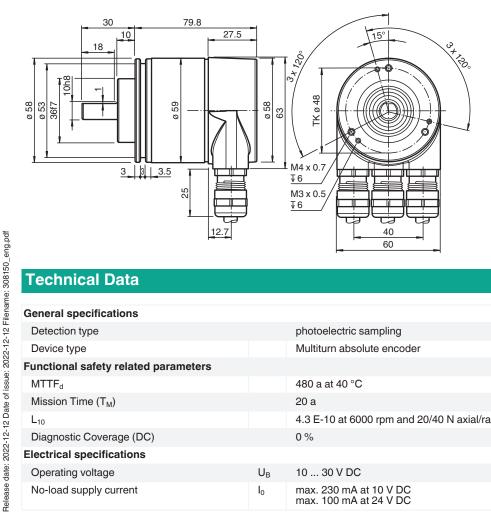


Multiturn absolute encoder DVM58N-011AGR0BY-1213

- Industrial standard housing Ø58 mm
- 25-bit multiturn
- Galvanically isolated DeviceNet interface
- Clamping flange
- Auto-saving function


Function

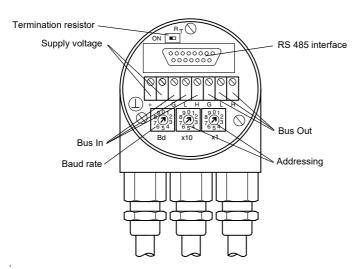
Absolute encoders deliver an absolute step value for each angle setting. All these values are represented by code samples on one or more code disks. The code disks are screened by an infrared LED and the bit obtained sample is detected by an optical array. Its signals are electronically

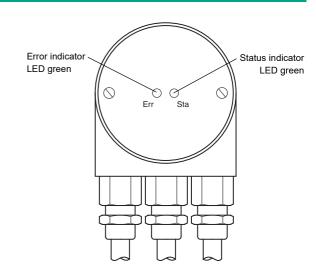
amplified and are forwarded on to the interface for processing.

The bus electronics module is integrated into the removable housing cover. This makes it possible to mount or replace the new rotary encoders and the matching bus electronics separately during installation or service.

Dimensions

Technical Data


General specifications				
Detection type		photoelectric sampling		
Device type		Multiturn absolute encoder		
Functional safety related parameters				
MTTF _d		480 a at 40 °C		
Mission Time (T _M)		20 a		
L ₁₀		4.3 E-10 at 6000 rpm and 20/40 N axial/radial shaft load		
Diagnostic Coverage (DC)		0 %		
Electrical specifications				
Operating voltage	U_B	10 30 V DC		
No-load supply current	I ₀	max. 230 mA at 10 V DC max. 100 mA at 24 V DC		


Technical Data Linearity ± 2 LSB at 16 Bit, ± 1 LSB at 13 Bit, ± 0,5 LSB at 12 Bit Output code binary code cw ascending (clockwise rotation, code course ascending) cw descending (clockwise rotation, code course descending) Code course (counting direction) Interface DeviceNet Interface type Resolution Single turn 13 Bit Multiturn 12 Bit Overall resolution 25 Bit Transfer rate max. 0.5 MBit/s Connection Terminal compartment in removable housing cover Standard conformity Degree of protection DIN EN 60529, IP65 Climatic testing DIN EN 60068-2-30, no moisture condensation Emitted interference DIN EN 61000-6-4 Noise immunity DIN EN 61000-6-2 Shock resistance DIN EN 60068-2-27, 100 g, 6 ms DIN EN 60068-2-6, 20 g, 10 ... 2000 Hz Vibration resistance Approvals and certificates **UL** approval cULus Listed, General Purpose, Class 2 Power Source **Ambient conditions** Operating temperature -40 ... 85 °C (-40 ... 185 °F) -40 ... 85 °C (-40 ... 185 °F) Storage temperature Mechanical specifications Material housing: powder coated aluminum flange: aluminum shaft: stainless steel Mass approx. 700 g Rotational speed max. 12000 min -1 30 gcm² Moment of inertia Starting torque ≤3 Ncm Shaft load Axial 40 N Radial 110 N

0
α.
<u>-</u>
2
ne: 308150_eng.pdf
Φ.
0
വ
_
മ
õ
m
` '
ai.
~
_
ಹ
<u> </u>
ā
=
11
Z Ei
issue: 2022-12-12 Filename:
_
۷.
Ċ
—
۸'.
74
\sim
\simeq
ĊΊ
Φ
⊃
S
S
-
≂
~
Φ
≒
ate of issue
Dat
2 Dat
12 Dat
.12 Dat
2-12 Dat
12-12 Dat
-12-12 Dat
2-12-12 Dat
22-12-12 Dat
)22-12-12 Dat
2022-12-12 Dat
2022-12-12 Dat
e: 2022-12-12 Dat
te: 2022-12-12 Dat
ate: 2022-12-12 Dat
date: 2022-12-12 Dat
date: 2022-12-12 Dat
e date: 2022-12-12 Dat
se date: 2022-12-12 Dat
ase date: 2022-12-12 Dat
ease date: 2022-12-12 Dat
slease date: 2022-12-12 Dat
lelease date: 2022-12-12 Dat
Release date: 2022-12-12 Dat
2-12-12 D
Release date: 2022-12-12 Dat
Release date: 2022-12-12 Dat

Terminal	Explanation
Τ	Ground connection for power supply
(+)	Power supply
(-)	Power supply
CG	CAN ground
CL	CAN low
CH	CAN high
CG	CAN ground
CL	CAN low
CH	CAN high

Configuration

Adjusting the participant address

The participant address can be adjusted with the rotary switches. The address can be defined between 1 and 63, and may only be assigned once.

Adjusting the termination resistor

The terminating resistor $R_{T}\,(121\;\Omega)$ can be connected to the circuit by means of the switch:

Baud rate adjustment

Baud rate [kBit/s]	Switch position
125	0
250	1
500	2
125	3
reserved	4 9

LED-indicators

LED red	LED green	Meaning	
off	off	No voltage supply	
off	on	Encoder ready, boot-up message not transmitted, yet. Possible reasons: - no further participant present - wrong baud rate - encoder in prepared status	
flashing	on	Boot-up message transmitted, Device configuration possible.	
on	on	Normal operation mode, encoder in operational status.	

Parameterization

CAN operating mode

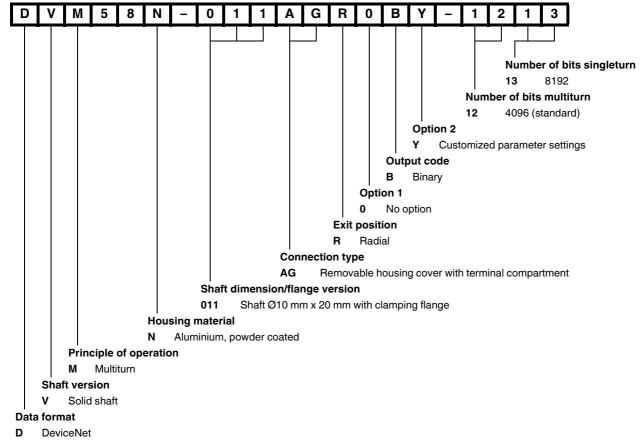
The operating mode of this encoder is set to "Polled mode". The connected host requests the current actual position value via a telegram. The absolute encoder reads in the current position, calculates all parameters that may have been set and then sends back the actual process value.

Programmable rotary encoder parameters

Parameter	Explanation		
Operating parameter	The direction of rotation (complement) can be specified by parameter as the operating parameter. This parameter determines the direction of rotation in which the output code will be rising or descending.		
Resolution per revolution	The "Resolution" parameter is used to program the rotary encoder so that a desired number of steps can be implemented in reference to a revolution.		
Overall resolution	This parameter indicates the desired number of measurement units of the entire travel length. This value must no exceed the overall resolution of the absolute encoder. If the absolute encoder is used in infinite mode, the overall resolution parameter can only take on values that are powers of 2 (2x).		
Preset value	The preset value is the desired position value that must be achieved for a specific physical setting of the axis. The preset value parameter is used to set the actual position value to the desired actual process value.		

Device specific encoder parameters

Class code: 66 Hex Instance: 01 Hex


Auto-saving function

Attribute ID	Access	Name	Data type	Description
92 hex	Get/Set	Code sequence	Boolean	Controls the code sequence clockwise or counterclockwise
93 hex	Get/Set	Resolution per revolution	INT	Resolution for one revolution
94 hex	Get/Set	Total resolution	DINT	Total measurable resolution
95 hex	Get/Set	Preset value	DINT	Setting a defined position value
96 hex	Get	Position value	DINT	Current position

This encoder saves the programmed parameters directly from the configuration tool into the non-volatile memory. No additional command is required.

Type Code

Order code

Release date: 2022-12-12 Date of issue: 2022-12-12 Filename: 308150_eng.pdf

Installation

Anti-interference measures

The use of highly sophisticated microelectronics requires a consistently implemented anti-interference and wiring concept. This becomes all the more important the more compact the constructions are and the higher the demands are on the performance of modern machines.

The following installation instructions and proposals apply for "normal industrial environments". There is no ideal solution for all interfering environments.

When the following measures are applied, the encoder should be in perfect working order:

- Termination of the serial line with a 120 Ω resistor (between Receive/Transmit and Receive/Transmit) at the beginning and end of the serial line (e. g. the control and the last encoder).
- The wiring of the encoder should be laid at a large distance to energy lines which could cause interferences.
- Cable cross-section of the screen at least 4 mm².
- Cable cross-section at least 0,14 mm².
- The wiring of the screen and 0 V should be arranged radially, if and when possible.
- · Do not kink or jam the cables.
- Adhere to the minimum bending radius as given in the data sheet and avoid tensile as well as shearing load.

Operating instructions

Every encoder manufactured by Pepperl+Fuchs leaves the factory in a perfect condition. In order to ensure this quality as well as a faultless operation, the following specifications have to be taken into consideration:

- Avoid any impact on the housing and in particular on the encoder shaft as well as the axial and radial overload of the encoder shaft
- The accuracy and service life of the encoder is guaranteed only, if a suitable coupling is used.
- The operating voltage for the encoder and the follow-up device (e. g. control) has to be switched on and off simultaneously.
- · Any wiring work has to be carried out with the system in a dead condition.
- The maximum operating voltages must not be exceeded. The devices have to be operated at extra-low safety voltage.

Notes on connecting the electric screening

The immunity to interference of a plant depends on the correct screening. In this field installation faults occur frequently. Often the screen is applied to one side only, and is then soldered to the earthing terminal with a wire, which is a valid procedure in LF engineering. However, in case of EMC the rules of HF engineering apply.

One basic goal in HF engineering is to pass the HF energy to earth at an impedance as low as possible as otherwise energy would discharge into the cable. A low impedance is achieved by a large-surface connection to metal surfaces.

The following instructions have to be observed:

- Apply the screen on both sides to a "common earth" in a large surface, if there is no risk of equipotential currents.
- The screen has to be passed behind the insulation and has to be clamped on a large surface below the tension relief.
- In case of cable connections to screw-type terminals, the tension relief has to be connected to an earthed surface.
- If plugs are used, metallised plugs only should be fitted (such as sub D plugs with metallised housing). Please observe the
 direct connection of the tension relief to the housing.

Advantage: metalised connector,

shield

clamped with the strain

relief

clamp

Disadvantage: soldering shield on

Safety instructions

Please observe the national safety and accident prevention regulations as well as the subsequent safety instructions in these operating instructions when working on encoders.

If failures cannot be remedied, the device has to be shut down and has to be secured against accidental operation.

Repairs may be carried out only by the manufacturer. Entry into and modifications of the device are not permissible.

Tighten the clamping ring only, if a shaft has been fitted in the area of the clamping ring (hollow shaft encoders). Tighten all screws and plug connectors prior to operating the encoder.

Multiturn absolute encoder

Do not stand on the encoder!

Do not remachine the drive shaft!

Avoid impact!

Do not remachine the housing!